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Figure 1: Visualizations of Motion Sequences of Virtual Characters Performing Various Intended Actions with Different Objects, as
Generated by Our Method. We synthesize the full-body pose sequences and the 3D object positions from text-based instruction labels. Our
method can synthesize both single-handed and two-handed interactions depending on the intent and the type of object used.

Abstract
Can we make virtual characters in a scene interact with their surrounding objects through simple instructions? Is it possible
to synthesize such motion plausibly with a diverse set of objects and instructions? Inspired by these questions, we present the
first framework to synthesize the full-body motion of virtual human characters performing specified actions with 3D objects
placed within their reach. Our system takes textual instructions specifying the objects and the associated ‘intentions’ of the
virtual characters as input and outputs diverse sequences of full-body motions. This contrasts existing works, where full-body
action synthesis methods generally do not consider object interactions, and human-object interaction methods focus mainly on
synthesizing hand or finger movements for grasping objects. We accomplish our objective by designing an intent-driven full-
body motion generator, which uses a pair of decoupled conditional variational auto-regressors to learn the motion of the body
parts in an autoregressive manner. We also optimize the 6-DoF pose of the objects such that they plausibly fit within the hands
of the synthesized characters. We compare our proposed method with the existing methods of motion synthesis and establish a
new and stronger state-of-the-art for the task of intent-driven motion synthesis.
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1. Introduction

Humans regularly use and interact with objects in numerous ways
in the real world. Interactions like eating a fruit or brushing the
teeth, as shown in Fig. 1, are part of our daily routines. Being able
to synthesize such interactions in a virtual 3D environment through
textual instructions has widespread applications in several areas,
including computer graphics and robotics [ALNM20; HTBT22;
WLK*22], movie script visualization [HMLC09] and game de-
sign [SSR07]. For instance, in a digitally created movie scene or
a virtual role-playing game, it is natural for the character to interact
with the scene objects based on a set of instructions, such as yield-
ing tools, using objects, or eating various items. Manually mod-
eling such 3D character-object interactions or intentions is time-
consuming and laborious, when we desire to synthesize a variety
of possible motions with the same intention and object.

In this context, many recent methods automatically synthesize
motions for virtual characters by encoding control signals such as
music [LYL*19; LYC*20; LRX*21], speech [BCRM21; HXM*21;
HES*22] or text, either as sentences [GZW*20; BRB*21;
GCO*21; PBV22] or as high-level action descriptions [AHC*18;
LWC*18; AM19]. Methods synthesizing full-body pose sequences
typically follow an autoregressive approach to maintain continuity
in the synthesized motions [LZCvdP20; RBH*21; GZZ*22]. These
autoregressive motion synthesis frameworks predict short-term fu-
ture sequences from a short history. There are also several meth-
ods for hand-object interactions [KYZ*20; TGBT20; JLWW21;
ZYSK21; CKA*22], which focus on generating only the wrist and
finger movements for grasping various objects. However, modeling
hand motion alone is insufficient to create a plausible motion se-
quence for an intent-driven virtual character. Instead, we believe
it is crucial to operate in the space of full-body motion synthe-
sis. There are two prime reasons for this. Firstly, synthesizing full-
body movements allows for a broader range of interactions (Fig. 1).
For several intents, such as eating, drinking, inspecting, passing,
or exchanging objects between hands, the head, the arms, and the
torso are also part of the complete action sequence [TGBT20].
Secondly, trivially attaching the synthesized hand motion to the
remaining body [PRB*18] leads to an uncanny and physically
implausible motion generation (see suppl. video). Further, recent
works [TCBT22; WWZ*22] have demonstrated the ability to gen-
erate whole-body grasping motion starting from a T-Pose till the
moment of the grasp. However, synthesizing a plausible motion se-
quence after the first grasp moment, based on an intent guiding the
human-object interaction, remains unaddressed.

To address these limitations, we propose IMoS, a novel frame-
work to synthesize diverse, full-body motion sequences of human-
object interactions. Crucially, we synthesize the motions based on
the input textual instructions consisting of actions (intentions) and
objects (Fig. 2). We learn generalizable intent encodings from the
input intent-object pairs using a CLIP encoder [RKH*21], which
is a large-scale language model trained on a large corpus of text-
image pairs. Given the initial body poses and the 3D object posi-
tions, we design an intent-driven full-body motion generator model
to autoregressively generate full-body motions (Sec.3). We follow
a decoupling approach and model the arms and the body motions
using separate Conditional Variational Autoregressors to make our

Figure 2: Overview of Our Intent-Driven Full-Body Motion Gen-
erator. Our model takes in the initial 3D body poses and object po-
sitions (upper-left) and instruction labels (upper-middle) describ-
ing the object types and the intended actions. We design a pair of
decoupled conditional variational auto-regressors, the Arms Syn-
thesis Module and the Body Synthesis Module (lower-middle), to
separately synthesize the arms and the rest of the body. We also
design a Condition Encoder (middle) to condition our decoupled
autoregressors based on the input instruction labels and the body
shape parameters. We concatenate our synthesized arm and body
motions and use our Object Optimizer Module (lower-right) to
optimize the 6-DoF parameters of the object while satisfying the
grasping constraints. Our model outputs the synthesized full-body
motion sequence together with the object positions (upper-right).

output arm and body movements more precise. Since these autore-
gressors are variational in nature, they allow us to sample diverse
motions from the latent space at inference time. We also observe
that regressing the motion from a larger past context is crucial in
modeling long-term temporal dependence between the joints. We
use a position-encoded self-attention mapping to model correla-
tions between the different joints to allow a broader range of inter-
actions. Lastly, we perform an optimization routine to estimate the
corresponding 6-DoF object positions relative to the hand position
in each frame (Sec 3.2.4). We use the recovered object positions to
condition future motion synthesis.

We train and evaluate our method on the recent GRAB dataset
[TGBT20] (Sec. 5.1), consisting of ∼1.3K sequences of human-
object interactions exhibiting multiple intents. We quantitatively
evaluate our synthesized sequences on established metrics, such
as the mean per-joint position error, the average variance error,
the Fréchet Inception distance, recognition accuracy, diversity, and
multimodality, to test the effectiveness of the model. Further, we
conduct a visual perceptual study for subjective evaluation of our
synthesized motions compared to recent conditional motion syn-
thesis methods (Sec. 5.6).

In summary, our primary technical contributions are threefold:

• A new framework for generating diverse motion sequences
of virtual human characters interacting with objects of known
shapes placed within their reach, according to text-based instruc-
tion labels. In contrast to previous works on character-object in-
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Method
Motion Synthesis

Full
Body

Intent-
Driven

Only Till
Grasp

Object
Manipulation

GRABNet [TGBT20] ✗ ✗ ✗ ✗

D-Grasp [CKA*22] ✗ ✗ ✗ ✓

A2M [PBV21] ✓ ✓ ✗ ✗

ACTOR [PBV21] ✓ ✓ ✗ ✗

GOAL [TCBT22] ✓ ✗ ✓ ✗

SAGA [WWZ*22] ✓ ✗ ✓ ✗

IMoS (ours) ✓ ✓ ✗ ✓

Table 1: Overview of the Problem Definitions of Existing Meth-
ods. Our method is the only one combining three important charac-
teristics and the first one to synthesize intent-driven full-body pose
sequences for motions with object manipulation.

teractions, our proposed method also optimizes the 6-DoF object
positions in 3D.

• Synthesizing interactions involving both hands, including se-
quences where the character exchanges an object between the
hands (“offhand”) – a previously unexplored setting.

• Learning separate variational latent embeddings for the arms
from the rest of the body to enable diversity in the synthesized
motions and accurate synthesis of both-handed interactions.

2. Related Work

Our work aligns with past works on modeling 3D human-object in-
teractions. We study these works from four vantage points: human
pose forecasting and synthesis, human-object 3D interaction mod-
eling, hand-object grasp synthesis, and full-body grasp synthesis.

Human Pose Forecasting and Synthesis. Human pose forecast-
ing methods predict future motions from a sequence of past poses
as joint positions [MBR17] or joint rotations [PGA18; RBH*21].
Recent works on 3D human pose forecasting are stochastic meth-
ods [YK20; LLW*21] that use VAEs [KW14] or GANs [GPM*20]
to introduce variability in the output motion sequences. Hu-
MoR [RBH*21] proposes a CVAE architecture that learns a dis-
tribution of pose transitions in the latent space and ensures phys-
ical plausibility through post-processing optimization. Motion-
VAE [LZCvdP20] learns to drive a character based on a goal po-
sition by decoding from a variational latent space. Characteristic
3D pose [DFD22] stochastically predicts future 3D characteristic
poses given short sequences of observations. Other human motion
synthesis methods are trained to synthesize a motion sequence con-
ditioned on semantic action labels [GZW*20; PBV21; DFD22], or
text sentences [GZZ*22; PBV22]. Action2Motion [GZW*20] in-
puts an action label to generate the human pose in an autoregres-
sive manner using a VAE-GRU. Differently, ACTOR [PBV21] em-
ploys a VAE-Transformer to generate the full sequence in one shot.
TEMOS [PBV22] uses the VAE-Transformer concept on a multi-
modal setting to generate motions from text sentences. Our work
extends full-body motion synthesis conditioned on semantic labels
by additionally incorporating object interactions.

Human-Object 3D Interaction Modeling. With the availabil-
ity of several human-object 3D datasets like [SZKS19], BE-
HAVE [BXP*22], PROX [HCTB19], D3D-HOI [XJMS21],
H2O [KTS*21], GraviCap [DSJ*21], joint human-object motion
modeling has been an actively researched topic. Among more
recent methods, PHOSA [ZPJ*20] reconstructs the human and
the object in the scene by jointly optimizing for the reprojec-
tion error of the object’s silhouette and the human. Neural State
Machines [SZKS19] synthesize human motion while interact-
ing with objects like chairs or a wall in the scene. Likewise,
SAMP [HCV*21] incorporates a path planning module to improve
the character’s motion in the scene. COUCH [ZBS*22] synthe-
sizes sitting interactions with couches by generating contact points
and then using them to constrain the sitting motion. All the pre-
vious methods perform interactions with large objects (chairs and
couches) and are driven by low-level character control. In contrast,
we synthesize fine-grained motions with handheld objects using
instruction labels as input.

Hand-Object Grasp Synthesis. Grasp synthesis has been ex-
tensively studied in computer graphics [ES03; LFP07; KP15;
KYZ*20; ZYSK21] and robotics [BI05; HL06; DKB*10; AGK18;
LPX*19]. Analytical approaches have formulated grasp synthesis
as a constrained optimization problem satisfying the grasp proper-
ties [KDCI10; SKK12]. Data-driven approaches [RA15; PG16] fo-
cus on learning the representations for synthesizing grasps through
machine learning methods. More recent approaches [BHHF19;
KYZ*20; TGBT20; JLWW21] predict the hand parameters of the
MANO hand model [RTB17] for synthesizing a grasp using neu-
ral networks. Many image datasets [HVT*19; ZLM*19; BTT*20;
LWM21; ZHT*21] featuring hand-object interaction with contact
maps are also currently available. Taheri et al. [TGBT20] further
introduce the GRAB dataset, which captures the contact map from
hands and the full-body motions before and during the grasp. They
also propose GrabNet, a network that estimates MANO parame-
ters at the moment of grasp for unseen objects in a coarse-to-fine
manner. [KYZ*20] proposes Grasping Field, a method that learns
an implicit representation of the hand-object interaction using a
generative model. Grady et al. [GTT*21] derive physically plau-
sible hand pose estimation by optimizing estimated hand meshes
with contact prediction. We differ from all these methods as our
work focuses on synthesizing full-body sequences. While modeling
hand-object interaction is a well-researched problem, it is inher-
ently limited in its ability to model several types of human-object
interactions that require the full human body (e.g., tilting back the
head when drinking from a glass).

Full-Body Grasp Synthesis. This is a relatively recent line
of work following the success of hand-object grasp synthesis.
GOAL [TCBT22] synthesizes full-body motion for grasping a
given object by first estimating the whole-body grasping pose for
the object and then treating this pose as their goal for a motion-
infilling module that interpolates the motion between a T-Pose and
the goal pose. SAGA [WWZ*22] also follows a similar strategy of
motion infilling but uses markers to represent the body pose while
also learning a contact map for the grasp for additional supervision.
Both these methods synthesize full-body motions until the point of
grasping. In contrast, we synthesize the motion taking place after
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Figure 3: Architecture of Our Intent-Driven Full-Body Motion Generator Model. Given previous k frames of body poses and object
positions, we train the arms and the rest of the body separately using our Arm Synthesis (upper-middle) and the Body Synthesis (lower-
middle) Modules, respectively. We jointly synthesize the entire motion sequences autoregressively, conditioned on the input intent, the object,
and the body shape, all encoded through our Condition Encoder (upper-left). We use position-encoded self-attention on the past k frames
for the body joints before passing them through our Body Synthesis Module. After generating the body pose, our Object Optimizer Module
(lower-right) optimizes for the 6-DoF pose of the given object such that it plausibly fits within the hands of the synthesized character.

the object is grasped (see Table 1). This is a non-trivial and more
challenging setup. Conditioning human and object motions based
on the intended actions while also ensuring diversity in the gener-
ated motion sequences requires additionally learning their intent-
based mutual interactions in an efficient and generalizable manner.

3. Intent-Driven Full-Body Motion Generator

We show the architecture of our intent-driven full-body motion
generator model in Fig. 3. Given a human character’s shape and ini-
tial 3D body pose, a rigid 3D object placed within their reach, and
an intended action to perform with that object, our goal is to syn-
thesize a full-body motion sequence of the character performing the
intended action with the object. We pose this problem as synthesiz-
ing the full-body motion sequence conditioned on the given object
and a textual instruction label indicating the intent. We solve this
problem through four modules. First, we encode the input instruc-
tion labels consisting of the type of the object and the associated
action using our Condition Encoder. We also input the subject’s
body shape parameters into our Condition Encoder. We use this en-
coding as a conditioning signal for all the modules. A key charac-
teristic of our problem is that the arms are the primary movers dur-
ing human-object interactions. Therefore, we use a pair of decou-
pled conditional variational autoregressor networks to synthesize
the arm movements and the rest of the body movements separately,
using an Arm Synthesis Module and a Body Synthesis Module, re-
spectively. Lastly, we use an Object Optimizer Module to optimize
the 6-DoF pose of the given object such that it fits plausibly within
the hands of the synthesized character.

3.1. 3D Human Body and Object Representation

We represent the human mesh using the SMPL-X [PCG*19] para-
metric body model. SMPL-X parametrizes the full human body
along with the hands and the face as a differentiable function
SMPLX(β,r,Ψ, t), consisting of body shape parameters β ∈ R10,

the root translation t ∈ R3, the axis-angle rotations for the body
joints r ∈ RJ×3 (J = 55), and the face expression parameters
Ψ ∈ R10. It maps the parameters to a body mesh with 10,475 ver-
tices. To improve the stability and the convergence characteristics
of our model, we use the 6D continuous representations [ZBL*19]
θ ∈ RJ×6 to represent body joint rotations. We downsample all the
objects in the dataset to 300 vertices for faster optimization. The
object’s 6-DOF pose is represented using a rotation matrix R ∈ R9

and a translation vector T ∈ R3.

3.2. Model Design

We now discuss each of our modules in detail. Our synthesis
pipeline assumes that the character interacts with only one object
at a time. Interactions can be either one-handed or both-handed,
depending on the type of action and the object.

3.2.1. Condition Encoder

We input the object’s category label using a one-hot vector wo ∈
R51. To represent the intended action information, we pass the
intended action label, given as an English word, through the pre-
trained CLIP [RKH*21] model and use the embeddings wa ∈R512

that it outputs. The idea behind encoding the action labels with a
pre-trained text encoder is the general relevance between the action
semantics and the corresponding body movements. For example,
actions such as “drink” and “pour” typically invoke similar arm
movements and are semantically close. In contrast, other actions,
such as “inspect” and “pass”, invoke different body movements and
are semantically different. Therefore, their embeddings, given by a
large-scale language model such as CLIP, provide a regularized,
semantics-based distribution of the intended actions and stabilizes
further processing. Refer to the Appendix for more details.

We concatenate wo and wa with the body shape parameters (β ∈
R10) and pass them into our Condition Encoder qc. Our Condition

© 2023 The Authors.
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Encoder uses a series of MLPs to encode these input signals and
projects them onto an encoded feature vector φ ∈ R400 as

φ = qc(wo,wa,β). (1)

3.2.2. Arm Synthesis Module

Our Arm Synthesis Module is a conditional variational au-
toregressor that synthesizes the arm movements, conditioned
on our condition encoder output φ and the previous k frames
of synthesized arm poses along with the 3D object positions.
The encoder of this module, qa, takes in the tuple qa

in ={
φ,θa

t−k:t−1,Tt−k:t−1,Rt−k:t−1
}

, where θ
a
t−k:t−1 are the rota-

tions for the arm joints synthesized by the past k frames, and
Tt−k:t−1, Rt−k:t−1 are the translation and rotation parameters of
the object for the past k frames. During training, qa uses a series of
MLPs on the input and maps them to the parameters of a latent nor-
mal distribution, µa,σa ∈ R32. The decoder, q̂a, samples za ∈ R32

from the latent distribution and uses the previous pose information
(qin

a ) to synthesize the arm pose for the current frame (θ̂a
t ) through

a series of MLPs with skip connections as

θ̂
a
t = q̂a(za,qin

a ). (2)

3.2.3. Body Synthesis Module

Similar to the Arm Synthesis Module, the Body Synthesis Module
is a variational autoregressor. We use the term ‘body’ to denote the
rest of the body parts apart from the arms. It includes the head, the
torso, the hips, and the legs. We also note that the movements of
all these parts are correlated when performing a full-body action.
For example, to drink from a cup, one has to tilt their head back
when bringing the cup to their mouth. To model such fine-grained
correlations, we first compute a self-attention mapping between all
the joints in each pose as

θ
pe
k = [Attn(Q,K,V)]k , (3)

where the query Q is a joint position and the key-value
pair (K,V) are information of all other joints provided as
J sinusoidal positional encodings for each of the k frames.
The encoder of the module, qb, takes in the tuple qb

in ={
φ, θ̂a

t−k:t−1,θ
pe
t−k:t−1,Tt−k:t−1,Rt−k:t−1

}
. The structure of qb

is similar to that of the Arm Synthesis Module encoder qa, and
it maps the input qin

b to the parameters of a latent normal distribu-
tion, µb,σb ∈ R100. The decoder, q̂b, samples zb ∈ R100 from the
latent distribution and outputs the rest of the body poses as

θ̂
b
t = q̂b(zb,q

in
b ). (4)

We then concatenate θ̂
a
t and θ̂

b
t to obtain the full-body pose θ̂t at

time t. We pass θ̂t to our Object Optimizer Module, along with the
last predicted object position, to generate the object position for the
current frame.

3.2.4. Object Optimizer Module

We have so far focused only on synthesizing the body poses for
a given instruction. For a complete synthesis, we also need to es-
timate the corresponding 6-DoF positions of the object. Although
fine-grained object synthesis is not the primary goal of our work,

Figure 4: Our Hand-Object Setup. We design the energy term Ed
to enforce that the distances between the hand and the object ver-
tices remain constant throughout the synthesis. Through the hand-
object contact term Ec, we also enforce that the points in contact in
the first frame remain in contact during the synthesis.

we aim to produce plausible object trajectories faithful to the syn-
thesized full-body motion. To this end, our core assumptions are
that (a) at the moment of grasping in the initial frame, the object is
at rest in an upright position and (b) inter-vertex distances between
the vertices of the object and the hand remain constant throughout
our intent-driven motion synthesis.

With these assumptions, we optimize the object’s rotation R,
translation T, as well as the pose parameters of the hand, Ph, in
the SMPL-X parameter space.

We first compute the matrix of Euclidean distances D ∈ RN×M

between the vertices on the hand, Vh ∈RN and those on the surface
of the object, Vo ∈ RM for the initial frame. We can retrieve the
hand vertices using the SMPL-X parameterization,

Vh = SMPLX(Ph). (5)

For each subsequent frame, we then minimize the objective:

R∗,T∗,Ph∗ = min
R,T,Ph

(λdEd +λcEc +λrEr) (6)

We use an energy term, Ed , to enforce the same inter-vertex dis-
tances between the hand and the object vertices in all the subse-
quent frames as in the first frame, as

Ed(R,T,Ph) =
∥∥∥dist(Vh,RVo +T)−D

∥∥∥
2
, (7)

However, this term alone does not guarantee that the object is in
contact with the hand in subsequent frames because, in practice,
the hand joints do not converge to plausible poses using Ed . We
address this issue by introducing the contact term Ec, which forces
the distance between the in-contact vertex pairs of the first frame to
be zero, as

Ec(Ph) =
∥∥∥δ.dist(Vh,RVo +T)

∥∥∥
2
. (8)

Here, δ(·, ·) is a contact indicator function for the elements of the
distance matrix for which the distance is less than a threshold:
δ(i, j)) = 1, if Di, j < τ and 0 otherwise, as we show in Fig. 4.

Finally, Er consists of L2 regularizers to ensure that the object
and hand poses do not deviate significantly from the previous frame
and thus enforce temporal consistency, as

Er(R,T,Ph) =
∥∥∥∆R+∆T+∆Ph

∥∥∥
2
, (9)

where ∆ signifies the difference in values between the current and
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Figure 5: Object Position Optimization. We optimize the 6-DoF
pose of the object such that it fits plausibly within the hands of the
virtual character. We show three snapshots of such fitting after the
0th, 500th and the 1200th iteration of our optimization.

the previous frame. We initialize the hand poses using a state-of-
the-art grasp estimator proposed in [TCBT22]. The optimization
routine iteratively corrects the initial estimates of the finger move-
ments while placing the object within the person’s hands. Fig. 5
illustrates the optimization routine.

4. Implementation

This section describes our training and inference routines and the
implementation details for our generator network.

Training and Inference Routines. To maintain a fixed number of
input frames for computational stability, to reduce the parameter
load and associated training overheads, and to avoid overfitting to
redundant frames, we represent our ground-truth motion sequences
using T = 15 frames, taken at a sampling rate of 8-10 fps. These
15 frames act as the key frames determining the motion sequence.

The encoders and the decoders inside our four modules use fully-
connected layers with skip connections, LeakyReLU activations,
and batch normalization [Aga18; BGSW18]. We use k = 4 past
frames (optimized through experiments) to synthesize the subse-
quent time steps. We train our autoregressor based Arm Synthesis
and Body Synthesis Modules to minimize the KL divergence loss:

LKL =DKL
(
qa (za|xt−k:t−1,φ) ||N (0, I)

)
+DKL

(
qb (zb|xt−k:t−1,φ) ||N (0, I)

)
. (10)

We compute the pose and the velocity reconstruction loss between
the ground-truth rotations θ and the predicted rotations θ̂ as

Lrec =
∥∥∥θ− θ̂

∥∥∥
1
+
∥∥∥∆θ−∆θ̂

∥∥∥
1
. (11)

We train our model on the following weighted sum of these losses:

L= λKLLKL +λpLrec, (12)

where λKL and λp are the weight parameters. We can then use the
regressed body motion parameters p̂ to optimize the 6-DoF object
positions at every time step.

During inference, we synthesize motions for novel intent-object
pairs and novel body shape parameters. We input an initial body
pose, a 3D object placed within reach of the character and an in-
tended action to be performed with the object, and autoregressively
synthesize the intent-based full-body motion sequence.

Implementation Details. We train our model for 1,600 epochs
using the Adam Optimizer [KB14] with a base learning rate of
5× 10−4, and a batch size of 64, which takes roughly four hours

on an NVIDIA A100-PCIE-40GB GPU. We decay the learning
rate (LR) using a Reduce-on-plateau LR scheduler with a pa-
tience of 3 epochs and a decay rate of 0.999. We set λKL = 0.001,
λp = λd = 1.0 and λc = λr = 0.005. During inference, synthesiz-
ing the full-body poses and the corresponding object positions for
a motion sequence of 15 frames take approximately 1-1.5 minutes.
Finally, we perform a linear interpolation on our generated frames
to up-sample the motion to 30 frames per sequence for cleaner vi-
sualization. We have implemented our network, training, and infer-
ence using the PyTorch framework [PGC*17].

5. Experiments and Results

This section reports the results of our experimental evaluation, in-
cluding the dataset, the evaluation metrics we use, and our ablation
studies. Since there are no existing methods for generating full-
body human-object interactions, we use existing methods that gen-
erate full-body poses based only on action labels as our baselines.

5.1. Dataset

We use the GRAB dataset [TGBT20] consisting of whole-body
grasping sequences performed by ten different subjects. The sub-
jects interact with 51 different objects via four basic intents, “use”,
“pass”, “lift”, and “offhand”. “Use” further has a sub-category of 26
different actions depicting plausible intent-object interactions such
as drinking or pouring from a cup to taking a picture with or brows-
ing a camera. Following the split of [DFD22], we take subject ‘S1’
for validation, ‘S10’ for testing, and the remaining subjects ‘S2’
through ‘S9’ for training. This data split ensures that we test on
novel subjects with different body shapes and our inference con-
tains novel (intent-object) pairs such as offhanding a water bottle,
which is not present in our training set. We discard the “lift” inten-
tion from our setting as the motions depicting lifting an object were
inconsistent in the dataset. Thus our train, validation, and test splits
respectively consist of 789, 157, and 115 sequences.

5.2. Baselines

We compare our results with ACTOR [PBV21], Ac-
tion2Motion [GZW*20] and TEMOS [PBV22]. Since these
methods were not originally trained on the GRAB dataset,
we re-train them for our setting. We re-train ACTOR and the
Action2Motion methods for 1,600 epochs (the same number of
epochs we train our model for, see Sec. 4) conditioned only on
the action labels with no object information. For comparison with
TEMOS, we create sentences of the form “A person ⟨action⟩ the
⟨object⟩” (e.g., “a person eats the apple”) to use as input sentences,
and re-train the TEMOS model for 1,600 epochs as well. We
apply our Object Optimizer Module for all three motion synthesis
methods to generate the object positions for visual comparison.

5.3. Evaluation Metrics

We evaluate our method using the Mean Per-Joint Positional Error
(MPJPE), which measures the mean joint error over all time steps,
and the Average Variance Error (AVE) [GCO*21], which measures
the variance error between the joint positions.

© 2023 The Authors.
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Method MPJPE (↓) AVE (↓) FID (↓) Accuracy (↑) Diversity (→) Multimodality (→)

Real Motions (GT) - - - 0.97±0.001 1.15±0.015 0.30±0.010
ACTOR 0.09±0.005 8.05±0.002 0.67±0.002 0.78±0.010 1.06±0.015 0.19±0.010
Action2Motion 0.11±0.003 8.26±0.002 1.08±0.002 0.69±0.011 1.10±0.010 0.22±0.010
TEMOS 0.10±0.005 9.98±0.001 1.21±0.004 0.23±0.010 0.83±0.010 0.09±0.010

Ablation 1 0.05±0.002 4.41±0.002 0.39±0.002 0.78±0.012 1.06±0.015 0.21±0.010
Ablation 2 0.04±0.005 4.77±0.002 0.38±0.002 0.82±0.010 1.10±0.020 0.24±0.020
Ablation 3 0.05±0.005 5.41±0.002 0.42±0.002 0.82±0.010 1.08±0.010 0.25±0.010
Ours 0.03±0.005 3.82±0.004 0.27±0.002 0.87±0.011 1.11±0.015 0.28±0.015

Table 2: Quantitative Evaluation. We compare with other motion synthesis methods, namely ACTOR [PBV21], Action2Motion [GZW*20]
and TEMOS [PBV22], and three ablated versions of our model (Sec. 5.4). We evaluate the methods on the MPJPE, AVE, FID, recognition
accuracy, diversity, and multimodality metrics. “↓” denotes lower values are better, “↑” denotes higher values are better, and “→” denotes
values closer to the ground-truth are better.

Figure 6: Perceptual Study Evaluation. We conduct a user study
where participants answer two questions: “Which animation looks
more realistic?” and “which animation best corresponds with the
input instruction label?”. We show them 30 randomly sampled
motion sequences synthesized by our method and the two base-
lines, ACTOR [PBV21] and Action2Motion [GZW*20]. We see our
method is chosen more than 80% times.

We further evaluate the naturalness and the overall diversity
of our generated motions using the Fréchet Inception Distance
(FID) [HRU*17], recognition accuracy, diversity, and multimodal-
ity. Following ACTOR [PBV21] and Action2Motion [GZW*20],
we train a standard RNN action recognition classifier on the GRAB
dataset and use the final layer of the classifier as the motion feature
extractor for calculating FID, diversity, and multimodality. Please
refer to our Appendix for further details.

5.4. Ablation Studies

We compare the performance of our model with the following ab-
lated versions:

• Ablation 1: Randomly initializing the input action labels with
512-d vectors: To study how the CLIP model influences the
conditioning of the synthesized motion, we conduct an ablation
where we train our Condition Encoder with a 512 dimensional
randomly initialized vector for the input action labels instead of
taking the CLIP embeddings.

• Ablation 2: Training the Body Synthesis module without us-
ing the self-attention mapping. In this ablation, we exclude our
position-encoded multi-head self-attention from the input of the
Body Synthesis module of our framework to see how it influ-
ences the quality of our motion.

• Ablation 3: Training the full body instead of decoupling to
the Arm Synthesis and the Body Synthesis Modules. We train
the whole body movements in one module instead of separately
synthesizing the arms and the rest of the body.

5.5. Quantitative Evaluation

Table 2 shows the MPJPE, AVE, FID, recognition accu-
racy, diversity, and multimodality on our test set compared
to the three state-of-the-art methods of ACTOR [PBV21], Ac-
tion2Motion [GZW*20], and TEMOS [PBV22]. We also include
the ablated versions of our methods (Sec. 5.4) in our evaluation.
We repeat each experiment 20 times as done in ACTOR [PBV21],
and report a statistical interval with 95% confidence. Our method
shows significant improvements in all the metrics compared to the
existing methods and the ablated versions.

5.6. Perceptual Study

To evaluate the visual quality of our motions, we conduct a percep-
tual study where we compare our results with ACTOR [PBV21]
and Action2Motion [GZW*20]. Except for TEMOS [PBV22],
which would quickly settle on the mean pose, the other two meth-
ods generated plausible full-body motions after re-training. We,
therefore, exclude TEMOS from the user study. We conduct our
perceptual study in the following two sections.

Comparison with Motion Synthesis Methods. In the first sec-
tion, we displayed our results and the results from ACTOR and
Action2Motion side-by-side in random order, along with the input
instruction label. We asked the participants to answer these ques-
tions for each sequence: “Which motion looks the most realistic?”
and “Which motion best corresponds with the input instruction la-
bel?”. We collected answers for 30 such sequences from 75 partic-
ipants. Fig. 6 illustrates the results of the study. In 80% responses,
participants marked our method as the most realistic compared to

© 2023 The Authors.
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Figure 7: Qualitative Results Showing Diversity in the Synthesized Motions. The two rows depict two diverse motion sequences generated
by our model. Our method can generate variations for the same instructions using either or both hands, along with plausible coordination
of the head and the body. Please refer to the supplementary video for more results.

ACTOR and Action2Motion. Likewise, 81.6% participants chose
our method to have the best semantic fidelity with the instruction
label. Upon examining the cases for which the participants pre-
ferred ACTOR instead of us, we found that it performed better for a
few actions, e.g., “screwing” the light bulb and “toasting” with the
wineglass, where the motion does not need to have hand-to-eye or
hand-to-mouth coordination. These actions do not include signifi-
cant variations within the dataset and are, therefore, easy to overfit.

Comparison with Ground-Truth. While ACTOR and Ac-
tion2Motion are the closest methods for our paradigm, they were
not originally designed to synthesize motions conditioned on in-
tents. Therefore, to get an additional perspective on the perfor-
mance of our method, we asked the participants to compare our
best synthesis results with the ground-truth motions in the sec-
ond section. To establish an upper bound on our performance, we
chose the 10 best samples from various intent-object pairings to
compare with the corresponding ground-truth motions. Again, we
displayed our synthesized and ground-truth motions side-by-side
in random order. This time, we kept an extra option: “cannot dis-
tinguish”. While our synthesized motions are, expectedly, less pre-
ferred than the ground-truth motions (15.6% vs. 36.9%), 47.5% of
the responses rate our best syntheses as indistinguishable in terms
of realism. We also note that participants rated our synthesized mo-
tions as more realistic than the ground-truth motions when it in-
volves actions such as “eating” an apple with one hand, which has
abundant training samples. On the other hand, our method encoun-
ters difficulties when synthesizing intents involving high-frequency
wrist or finger movements such as “shaking” or “squeezing”. This
is because our ℓ1 loss function (Eqn. (11)) tends to smooth out
the high-frequency components from the motion sequence, and the
GRAB dataset does not have sufficient samples of these actions to
train them separately.

5.7. Qualitative Evaluation

We show full qualitative results in our supplementary video. When
qualitatively compared with the ablated versions (Sec. 5.4), we find
that Ablation 1 (using random initialized vectors instead of CLIP)
and Ablation 3 (training one module for the whole-body) fail to
synthesize precise hand-mouth or hand-eye coordination for ac-
tions such as “drinking” and “eating”. Ablation 2 (without using
self-attention mapping) lacks subtle body movements, such as tilt-
ing back the head or bending the knee to pick up an object, which
improve the motion plausibility. We further analyze our generated
motions under the following headings:

Diversity Analysis. As we noted earlier (Sec. 1), generating di-
verse motion sequences for the same input instruction label is cru-
cial for an immersive user experience. Fig 7 shows our result for
two different sequences (left and right). Sampling from the vari-
ational latent space allows us to synthesize diverse motion se-
quences. In Fig. 7, we show two different sequences: “taking pic-
ture” with a camera (left) and “eating” an apple (right). We show
two variations of the same motions (upper and lower rows). We
note that the variations are diverse w.r.t how the head, arm, and
torso are angled to use the object. Our method benefits from op-
erating in the full-body space and produces more natural results
compared to naïvely performing a fixed mapping from the global
hand pose parameters to the end effectors of the remaining body.

Synthesis of Both-Handed Interactions. Our method is the first
to plausibly synthesize full-body motions for both-handed interac-
tions. We achieve this by decoupling the arm synthesis from the
full-body synthesis in our generator design (Sec. 3.2). The wrist
and the elbow joints play a crucial role in tasks such as picking up
an object with both hands or holding the object precisely. Learning

© 2023 The Authors.
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Figure 8: Examples of Imprecise Contacts in the GRAB
Dataset [TGBT20]. We show five (ground-truth) frames where the
body and the object are in contact. However, these contacts are not
precise. The fingers do not touch the object when grasping the mug,
the camera, or the cup. On the other hand, we see inter-penetration
between the hand and the object for the cube and the toothpaste.

the arm motions in a separate latent space helps our generator focus
more on such precise synthesis.

Object Position Predictions for Off-Handing Interactions. In
addition to both-handed interactions, we encounter sequences in
the GRAB dataset where the character passes an object from one
hand to the other. It is non-trivial to optimize the accurate object
positions when the object switches hands. Here, we first compute
the most likely frame at which the switching occurs and then trans-
fer the optimized hand parameters to the other hand. Fig: 9 shows
two such off-handing interactions with two objects.

Plausibility of Head Motions. Similar to the motion of the fin-
gers and the arms, the coordinated movement of the head and the
hands also determines the synthesis quality. While recent works
like GOAL [TCBT22] explicitly account for the head direction vec-
tor during network training and optimization, we observe that our
model learns visually plausible head orientations and hand-head
coordination without any explicit supervision. This raises the ques-
tion of whether explicit supervision is indeed necessary.

6. Discussion and Limitations

Through quantitative evaluations and a perceptual study, we estab-
lish that our method synthesizes plausible motions of virtual char-
acters performing intended actions with given objects. While we
can synthesize motions for various intents and objects, we observe
failure cases for certain rare intents with high-frequency wrist mo-
tions, e.g., “squeeze”, “shake” (see supplementary video). Addi-
tionally, our Object Optimizer Module (Sec. 3.2.4) optimizes the
fingers and the object positions based on an initial distance be-
tween them. This assumption works well with most of the intents
in the GRAB dataset, which involve static grasps. However, dy-
namic grasping, which involves hand slipping and relative motion
between the object and the hands (such as “rotating” a cube and
“stretching” an elastic band), is limited in our setting. We also note
that the contacts between the body and the objects are not fully pre-
cise for all samples in the GRAB dataset, possibly due to the sparse
marker-based motion capture. In some sequences, the fingers do

Figure 9: Off-Handing. We show two interactions of “offhanding”
where the character passes the object from one hand to the other.
Such interactions pose a unique optimization challenge when the
object is switching hands.

not touch the object while grasping, while in others, there are inter-
penetrations between the hand and the object (Fig. 8). Lastly, we do
not address long-term motion synthesis (in the order of minutes) in-
volving a sequence of actions performed with an object.

Ethical Considerations. Our method does not support texture and
fine appearance details and cannot be used to produce deceptive
content. Our results are not photo-realistic by design and cannot
be confused with real scenes. However, combining our technique
with a method supporting more realistic texture might raise ethical
concerns in the future.

7. Conclusion and Future Work

We presented the first full-body motion synthesis method for
character-object interactions. Such a motion synthesis pipeline can
become a useful, practical tool in applications requiring large-scale
character animations. We demonstrate that a decoupling approach
that separately models the arms and the body motions using con-
ditional variational autoregression leads to measurable perceptual
improvements and advances the state-of-the-art on multiple quan-
titative evaluations. We also synthesize interactions involving both
hands, including sequences where the object exchanges hands.

In the future, we intend to extend our model to synthesize dy-
namic grasps and full-body poses such that the virtual character
can change the grasp within a sequence. We also plan to explore
descriptive sentence embeddings for the interactions (e.g., “a per-
son passes the bowl using the right hand”) to generate more precise
and controllable motions.

Acknowledgements. This research was supported by the BMBF
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